
Anna: a lightning-fast static site
generator written in Go
Adhesh Athrey, Aditya Hegde, Anirudh Sudhir, Nathan Paul

6th July 2024

gh/anna-ssg

Anna is designed to be fast, highly configurable and easy to use.

Currently, anna beats Hugo and Eleventy another widely used static site generator
implemented in JavaScript, on several benchmarks

2

What does a static site generator do?

A Static Site Generator (SSG) merges templates with content files to produce static
websites by converting markdown into static HTML files, resulting in fast and easy-to-
maintain websites.

Fan art variation of the Go mascot, modified by Nats Romanova. CC BY-3.0 3

Genesis

The ACM student chapter at PESU ECC conducts an annual six-week ACM Industrial
Experience Program where students work as a team to develop industrial-level projects.
(AIEP (https://acmpesuecc.github.io/aiep/anna)) gave us hands-on experience with real-world projects and is an

excellent opportunity to interact with like-minded individuals.

Discussions over a week revealed how tiring it is to maintain blog sites, a task that
becomes more cumbersome as content grows. We decided to tackle this problem by
developing our own SSG, in Go! 4

https://acmpesuecc.github.io/aiep/anna

We began the project in a unique manner

Each of us creating our own prototype of the SSG. This was done to familiarize everyone
with the Go toolchain.

The first version of the SSG did just three things.

It rendered markdown (stored in files in a content folder in the project directory) to
HTML.

This HTML was injected into a layout.html file and served over a local web server.

Later, we implemented a front matter YAML parser to retrieve page metadata 5

What's in a name?

Probably the first thing that the four of us came across when joining ACM and HSP was
the famous Saaru repository, another SSG built by one of our seniors. Saaru is a thin
lentil soup, usually served with rices

This was just a playful stunt that we engaged in. We planned on beating Saaru at site
render times, optimizing at runtime.

In Kannada, rice is referred to as (ಅನ#) pronounced: /ɐnːɐ/
6

Starting Point: CLI Development

Our journey began with developing a command-line interface (CLI) for our static site
generator. We used the Cobra library to create a robust and user-friendly CLI. Cobra's
features allowed us to easily define commands, flags, and commands, making our tool
intuitive and efficient for users.

All the available flags and options can be viewed by entering anna -h

By leveraging Cobra, we provided a structured and organized interface, enabling users to
interact with our static site generator seamlessly. This foundation set the stage for
implementing additional features and optimizations. 7

Profiling

Team utilized the Pprof library as a one-stop solution for profiling and performance
analysis. By implementing a code profiling mechanism using Pprof, the team was able to
analyze the execution time of the code and identify potential bottlenecks for further
optimization. This allowed them to focus on improving the performance of the static site
generator and achieve faster rendering times. The Pprof library provided valuable
insights into the code's execution, enabling the team to make informed decisions and
optimize the performance of the project effectively. 8

Basic implementation

func (cmd *Cmd) PrintStats(elapsedTime time.Duration) {
 memStats := new(runtime.MemStats)
 runtime.ReadMemStats(memStats)
 log.Printf("Memory Usage: %d bytes", memStats.Alloc)
 log.Printf("Time Elapsed: %s", elapsedTime)
 cpuUsage := runtime.NumCPU()
 threads := runtime.GOMAXPROCS(0)
 runtime.ReadMemStats(memStats)

 log.Printf("Threads: %d", threads)
 log.Printf("Cores: %d", cpuUsage)
 log.Printf("Time Taken: %s", elapsedTime)
 log.Printf("Allocated Memory: %d bytes", memStats.Alloc)
 log.Printf("Total Memory Allocated: %d bytes", memStats.TotalAlloc)
 log.Printf("Heap Memory In Use: %d bytes", memStats.HeapInuse)
 log.Printf("Heap Memory Idle: %d bytes", memStats.HeapIdle)
 log.Printf("Heap Memory Released: %d bytes", memStats.HeapReleased)
 log.Printf("Number of Goroutines: %d", runtime.NumGoroutine())

 // Get the function with the highest CPU usage
 pc, _, _, _ := runtime.Caller(1)
 function := runtime.FuncForPC(pc)
 log.Printf("Function with Highest CPU Usage: %s", function.Name())
}

9

Directory Watchdog and Live Render

We implemented a directory watchdog system to streamline our workflow, avoiding the
need to manually restart the program for code or content changes. This system monitors
the working directory for modifications, automatically triggering a rerendering process
and updating the output in real-time. Additionally, it serves the rendered content for easy
previewing, allowing us to see changes immediately. This improvement has made our
development process more efficient and seamless, enabling quick iterations without
manual intervention. 10

POC

We implemented a live reload system using a liveReload struct to enhance our
development workflow. The struct maintains an error logger, a map of file modification
times, directories to monitor, file extensions to watch, a server status flag, and the site
data path.

type liveReload struct {
 errorLogger *log.Logger
 fileTimes map[string]time.Time
 rootDirs []string // Directories to monitor, so add or remove as needed
 extensions []string // File extensions to monitor
 serverRunning bool
 siteDataPath string
}

The system scans specified directories for changes in files with given extensions. When a
change in fileTimes is detected, it triggers the LiveReload pipeline to rerender content
and update the output. This ensures real-time previews without manual intervention,
enhancing development efficiency. 11

Parallel Rendering pipelines

To build a fast and efficient static site generator , we implemented parallel rendering
using goroutines. Instead of rendering Markdown files iteratively, we utilized goroutines
to process them concurrently.

By spawning a goroutine for each Markdown file, we significantly reduced the rendering
time. This approach leverages Go's concurrency model, allowing multiple files to be
rendered simultaneously, thus improving overall performance. 12

Curent Parallel Rendering Pipeline Model

13

Curent Parallel Rendering Pipeline Model

func (e *Engine) RenderUserDefinedPages(fileOutPath string, templates *template.Template) {
 numTemplates := len(e.DeepDataMerge.Templates)
 concurrency := numCPU * 2 // Simple way to keep limit on concurrency based on System Resources
 if numTemplates < concurrency {
 concurrency = numTemplates
 }
 var wg sync.WaitGroup
 semaphore := make(chan struct{}, concurrency)
 for _, templateURL := range templateURLs {
 if templateURL == ".html" {
 continue
 }
 wg.Add(1)
 semaphore <- struct{}{}
 go func(templateURL string) {
 defer func() {
 <-semaphore
 wg.Done()
 }()
 e.RenderPage(fileOutPath, template.URL(templateURL), templates,
 e.DeepDataMerge.Templates[template.URL(templateURL)].Frontmatter.Layout)
 }(templateURL)
 }
 wg.Wait()
}

14

14

Future Optimizations Plans

To further enhance performance, future plans include:

Fine-Tuning the Parallel Rendering Pipeline:

Refine our current parallel rendering process to achieve even better efficiency and
speed.

Switching to bufio:

Utilize bufio for more efficient buffered I/O operations, replacing regular I/O methods.

Caching Frequently Used Files:

Implement caching for frequently accessed files, such as templates, to reduce load
times. 15

Future Optimizations Plans

Worker Pool Implementation:

Introduce a worker pool to manage concurrent rendering tasks more effectively.

File Read-Ahead:

Implement file read-ahead strategies to minimize idle time by preloading necessary
data.

Optimizing I/O Operations:

Streamline other I/O processes to reduce the number of syscalls, thereby improving
overall performance. 16

Benchmarking and Stress Testing

With all current optimizations and future plans in place, we recognized the need for a
comprehensive benchmarking and stress testing strategy to evaluate our progress and
compare it against competitors. This involves:

Base Performance Metrics:

Measure key performance indicators (KPIs) such as render time, memory usage, and
CPU utilization for our static site generator with the help of the profiling system
already set up.

Creating Benchmarking Scenarios:

Develop a variety of test cases, including different site sizes, complexity levels, and
types of content, to assess performance under various conditions. 17

Benchmarking and Stress Testing

Stress Testing:

Conduct stress tests to push the system to its limits and identify bottlenecks by
rendering thousands of Markdown content pages. This helps in understanding how
the system performs under heavy load and what areas need improvement.

Comparative Analysis:

Benchmark our static site generator against competitors, using the same test
scenarios, to see where we stand and to identify areas for possible optimization.

Continuous Monitoring and Feedback:

With the tools implemented so far, such as Live Render and Profiling, we can achieve
continuous monitoring during the benchmarking process. These tools provide real-
time feedback and detailed reports on performance metrics. 18

Benchmark Data and Tested Cases and Related Information

We have performed benchmark runs comparing our ssg's performance with others
such as Hugo (https://gohugo.io) , Eleventy (https://www.11ty.dev/) , Saaru (https://saaru-docs.netlify.app/) and Sapling

(https://sapling.navinshrinivas.com/)

Benchmark 1: cd /tmp/bench/11ty && npx @11ty/eleventy
 Time (mean ± σ): 1.297 s ± 0.024 s [User: 1.414 s, System: 0.308 s]
 Range (min … max): 1.257 s … 1.338 s 10 runs

Benchmark 2: cd /tmp/bench/hugo && hugo
 Time (mean ± σ): 521.7 ms ± 9.2 ms [User: 1460.5 ms, System: 184.5 ms]
 Range (min … max): 505.0 ms … 535.5 ms 10 runs

Benchmark 3: cd /tmp/bench/anna && ./anna -r "site/"
 Time (mean ± σ): 270.3 ms ± 2.9 ms [User: 356.2 ms, System: 149.9 ms]
 Range (min … max): 266.8 ms … 275.3 ms 10 runs

Benchmark 4: cd /tmp/bench/saaru && ./saaru --base-path ./docs
 Time (mean ± σ): 143.9 ms ± 1.3 ms [User: 244.5 ms, System: 111.4 ms]
 Range (min … max): 141.9 ms … 146.2 ms 19 runs

Benchmark 5: cd /tmp/bench/sapling/benchmark && ./../sapling run
 Time (mean ± σ): 220.5 ms ± 5.2 ms [User: 211.1 ms, System: 199.4 ms]
 Range (min … max): 209.8 ms … 227.7 ms 12 runs

19

https://gohugo.io/
https://www.11ty.dev/
https://saaru-docs.netlify.app/
https://sapling.navinshrinivas.com/

19

Benchmark Data and Tested Cases and Related Information

Summary
 'cd /tmp/bench/saaru && ./saaru --base-path ./docs' ran
 1.53 ± 0.04 times faster than 'cd /tmp/bench/sapling/benchmark && ./../sapling run'
 1.88 ± 0.03 times faster than 'cd /tmp/bench/anna && ./anna -r "site/"'
 3.63 ± 0.07 times faster than 'cd /tmp/bench/hugo && hugo'
 9.02 ± 0.18 times faster than 'cd /tmp/bench/11ty && npx @11ty/eleventy'

20

RSS / Atom feed

RSS and Atom feeds are standardized formats used for distributing and accessing
updates from websites. They provide structured metadata such as titles, links, and
publication dates, allowing users and applications to efficiently stay informed about new
content without visiting each site individually

You get to read articles offline and cache posts for later use. You can follow websites
made with anna inside Brave (a popular web browser), Thunderbird or newsboat like I
do.

Users can have blog sites of their own and do not have to worry about distribution or
managing newsfeeds. Feeds in anna are turned on by default. 21

A buffer is used to efficiently build the XML content before writing it to
the file.

This avoids multiple file writes, which is slower.

func (e *Engine) GenerateFeed() {
 var buffer bytes.Buffer
}

Adding XML declaration and initializing root elements in buffer.

buffer.WriteString("<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"yes\"?>\n")
buffer.WriteString("<?xml-stylesheet href=\"/static/styles/feed.xsl\" type=\"text/xsl\"?>\n")
buffer.WriteString("<rss version=\"2.0\" xmlns:atom=\"http://www.w3.org/2005/Atom\">\n")
buffer.WriteString(" <channel>\n")
buffer.WriteString(" <title>")
xml.EscapeText(&buffer, []byte(e.DeepDataMerge.LayoutConfig.SiteTitle))
buffer.WriteString("</title>\n")
/*
 so on
*/
buffer.WriteString(" <lastBuildDate>" + time.Now().Format(time.RFC1123Z) + "</lastBuildDate>\n")
buffer.WriteString(" <atom:link href=\"" + e.DeepDataMerge.LayoutConfig.BaseURL + "/feed.xml\" rel=\"self\" type=\"application/rss+xml\" />\n")

22

Filtering and sorting posts by publication date

We don't want draft posts to show up!

// slice it
var posts []parser.TemplateData
for _, templateData := range e.DeepDataMerge.Templates {
 if !templateData.Frontmatter.Draft {
 posts = append(posts, templateData)
 }
}

// sort by publication date
sort.Slice(posts, func(i, j int) bool {
 return posts[i].Date > posts[j].Date // assuming Date is Unix timestamp
})

Your RSS reader should pick it up, but let's sort them to ensure they make semantic
sense. 23

Generating XML entries for the body

for each sorted post and writing to a file

for _, templateData := range posts {
 buffer.WriteString(" <item>\n")
 buffer.WriteString(" <title>")
 xml.EscapeText(&buffer, []byte(templateData.Frontmatter.Title))
 buffer.WriteString("</title>\n")
 buffer.WriteString(" <link>" + e.DeepDataMerge.LayoutConfig.BaseURL + "/" + string(templateData.CompleteURL) + "/</link>\n")
 /*
 so on
 */
 buffer.WriteString(" <description>")
 xml.EscapeText(&buffer, []byte(templateData.Body))
 buffer.WriteString("</description>\n")
 buffer.WriteString(" </item>\n")
}
buffer.WriteString(" </channel>\n")
buffer.WriteString("</rss>\n")
outputFile, err := os.Create(e.SiteDataPath + "rendered/feed.xml")

24

For Robots

A sitemap tells web crawlers how your site is structured, outlining how often different
pages are updated and helping search engines index your content efficiently.

User-agent: *
Allow: /

Sitemap: {{.BaseURL}}/sitemap.xml

25

A buffer is used similar to the atom feed

buffer.WriteString("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n")
buffer.WriteString("<urlset xmlns=\"http://www.sitemaps.org/schemas/sitemap/0.9\">\n")

// Sorting templates by key
keys := make([]string, 0, len(e.DeepDataMerge.Templates))
for k := range e.DeepDataMerge.Templates {
 keys = append(keys, string(k))
}
sort.Strings(keys)
tempTemplates := make(map[template.URL]parser.TemplateData)
for _, templateURL := range keys {
 tempTemplates[template.URL(templateURL)] = e.DeepDataMerge.Templates[template.URL(templateURL)]
}

for _, templateData := range e.DeepDataMerge.Templates {
 url := e.DeepDataMerge.LayoutConfig.BaseURL + "/" + string(templateData.CompleteURL)
 buffer.WriteString("\t<url>\n")
 buffer.WriteString("\t\t<loc>" + url + "</loc>\n")
 buffer.WriteString("\t\t<lastmod>" + templateData.Frontmatter.Date + "</lastmod>\n")
 buffer.WriteString("\t</url>\n")
}
buffer.WriteString("</urlset>\n")

26

For Humans

An important ease-of-use feature was building a GUI

The wizard lets a user pick a theme, enter your name, pick navbar elements, and
validates fields using regex checks so you don’t need to worry about relative paths in
baseURLs, canonical links, and sitemaps.

27

Bootstrapping themes

A catalog of themes are up on our GitHub, with a json index. Anna pulls the latest ones,
populates a list of themes you can pick with the wizard.

func DownloadTheme(themeName string) error {
 zipURL := fmt.Sprintf("%s/%s/%s.zip", baseURL, tagVer, themeName)
 zipFile := fmt.Sprintf("%s.zip", themeName)

 fmt.Printf("Downloading %s...\n", zipURL)
 if err := downloadFile(zipURL, zipFile); err != nil {
 return fmt.Errorf("error downloading theme '%s': %v", themeName, err)
 }

 fmt.Println("Extracting files...")
 if err := unzip(zipFile, destDir); err != nil {
 return fmt.Errorf("error extracting files: %v", err)
 }

 fmt.Printf("Theme '%s' extracted to '%s' directory successfully.\n", themeName, destDir)
 if err := os.Remove(zipFile); err != nil {
 fmt.Printf("Warning: error deleting zip file '%s': %v\n", zipFile, err)
 }
}

28

Asynchronous

Signals are asynchronous processed using a channel (FormSubmittedCh)

func (ws *WizardServer) handleSubmit(w http.ResponseWriter, r *http.Request) {

 // Decode JSON data from the request body into the LayoutConfig struct
 var config parser.LayoutConfig
 err := json.NewDecoder(r.Body).Decode(&config)
 if err != nil {
 ws.ErrorLogger.Println("Error decoding JSON:", err)
 http.Error(w, "Bad request", http.StatusBadRequest)
 return
 }

 err = ws.writeConfigToFile(config)
 if err != nil {
 ws.ErrorLogger.Println("Error writing config to file:", err)
 http.Error(w, "Internal server error", http.StatusInternalServerError)
 return
 }

 FormSubmittedCh <- struct{}{} // Signal that a form has been submitted successfully
}

29

After successfully completing the setup, the wizard launches a live
preview of your site in a new tab

// Called after successful form submission
err := DownloadTheme(config.ThemeURL)
if err != nil {
 http.Error(w, "Internal server error", http.StatusInternalServerError)
 ws.ErrorLogger.Println("Error downloading and extracting theme:", err)
 return
}

This ensures robust error handling for various stages like JSON decoding, file writing, and
theme downloading. 30

After successfully completing the setup, the
wizard launches a live preview of your site in a
new tab.

31

Deep Data Merge

During the render process, each template has access to the complete data of the site
via the DeepDataMerge struct

This includes access to page template data, collections, configuration files, tags and a
struct used to generate a JSON index of the site. 32

Deep Data Merge

type DeepDataMerge struct {
 // Templates stores the template data of all the pages of the site
 // Access the data for a particular page by using the relative path to the file as the key
 Templates map[template.URL]parser.TemplateData
 // Templates stores the template data of all tag sub-pages of the site
 Tags map[template.URL]parser.TemplateData
 // K-V pair storing all templates corresponding to a particular tag in the site
 TagsMap map[template.URL][]parser.TemplateData
 // Stores data parsed from layout/config.yml
 LayoutConfig parser.LayoutConfig
 // Templates stores the template data of all collection sub-pages of the site
 Collections map[template.URL]parser.TemplateData
 // K-V pair storing all templates corresponding to a particular collection in the site
 CollectionsMap map[template.URL][]parser.TemplateData
 // K-V pair storing the template layout name for a particular collection in the site
 CollectionsSubPageLayouts map[template.URL]string
 // Stores the index generated for search functionality
 JSONIndex map[template.URL]JSONIndexTemplate
}

33

Content Segregation

34

Content Segregation: Collections

Anna lets you aggregate pages as collections and nested collections to filter content
on various parameters

Case in point: HSP Members Page (https://wonderful-pegasus-a6899b.netlify.app/collections/members/)

Demo: Anna weekly progress (https://anna-docs.netlify.app/collections)
35

https://wonderful-pegasus-a6899b.netlify.app/collections/members/
https://anna-docs.netlify.app/collections

Content Segregation: Nested Collections

A page can be added to a nested collection using the "parent-collection>child-
collection" syntax

This adds the page to both the parent as well as the child collection while maintaining
hierarchy

func (p *Parser) collectionsParser(page TemplateData) {
 // Iterating over all sets of collections defined in the frontmatter
 for _, collectionSet := range page.Frontmatter.Collections {
 var collections []string
 // Collections will be nested using > as the separator - "posts>tech>Go"
 for _, item := range strings.Split(collectionSet, ">") {
 collections = append(collections, strings.TrimSpace(item))
 }
 for i := range len(collections) {
 collectionKey := "collections/"
 for j := range i + 1 {
 collectionKey += collections[j]
 if j != i {
 collectionKey += "/"
 }
 }

36

Content Seggregation

 collectionKey += ".html"
 var found bool
 for _, map_page := range p.CollectionsMap[template.URL(collectionKey)] {
 if map_page.CompleteURL == page.CompleteURL {
 found = true
 }
 }
 if !found {
 p.CollectionsMap[template.URL(collectionKey)] = append(p.CollectionsMap[template.URL(collectionKey)], page)
 }
 }
 }
}

37

Content Seggregation

38

Content Segregation: Tags

Tags allow for further categorisation of content and has a similar implementation as
collections renderer 39

Multi Site Render

Multiple sites can be rendered independently by anna

The render requirements can be configured via an "anna.json" file at the directory
root

{
 "siteDataPaths": {
 "landing_page": "site/",
 "blog_page": "blogs/"
 }
}

40

Render Managers: Vanilla Render

The muliple site rendering is made possible by RenderManager() functions which
manage the directory paths on which VanillaRender() or LiveReload() must be invoked

func (cmd *Cmd) VanillaRenderManager() {
 // ...
 if cmd.RenderSpecificSite == "" {
 for _, path := range annaConfig.SiteDataPaths {
 // call vanilla render on all directories in anna.json
 cmd.VanillaRender(path)
 }
 // If no site has been rendered due to empty "anna.yml", render the default "site/" path
 if !siteRendered {
 cmd.VanillaRender("site/")
 }
 } else {
 siteRendered := false
 for _, sitePath := range annaConfig.SiteDataPaths {
 // call vanilla on passed directory render the path is valid
 }
 }
}

41

Render Managers: Live Reload

The Live Reload Manager ensures that the site to be served, which is specified by the
-s command-line flag, is a valid site path mentioned in anna.json and invokes
LiveReload()

func (cmd *Cmd) LiveReloadManager() {
 // ...
 if cmd.ServeSpecificSite == "" {
 cmd.StartLiveReload("site/")
 } else {
 for _, sitePath := range annaConfig.SiteDataPaths {
 if strings.Compare(cmd.ServeSpecificSite, sitePath) == 0 {
 cmd.StartLiveReload(sitePath)
 return
 }
 }

 cmd.ErrorLogger.Fatal("Invalid site path to serve")

 }
}

42

Browser-side live reload

Anna performs a re-render of the site on changes to the markdown files while serving

It also performs browser-side live reload, eliminating the need for the user to reload
the page manually

An atomic boolean is used to determine if the page is to be reloaded or not

func eventsHandler(w http.ResponseWriter, r *http.Request) {
 if !reloadPageBool.Load() {
 return
 }

 event := "event:\ndata:\n\n"
 _, err := w.Write([]byte(event))
 if err != nil {
 log.Fatal(err)
 }
 w.(http.Flusher).Flush()

 reloadPageBool.CompareAndSwap(true, false)
}

43

Browser-side live reload

The server-sent event script is injected into the site pages during the live-reload mode
to listen for changes and auto-reload the browser

func StartLiveReload() {
 // ...
 if lr.traverseDirectory(rootDir) {
 cmd.VanillaRender(lr.siteDataPath)
 reloadPageBool.CompareAndSwap(false, true)
 }
 // ...
}

{{ if $PageData.LiveReload }}
<script>
const eventSource = new EventSource("http://localhost:8000/events");
eventSource.onmessage = function (event) {
 location.reload();
};
</script>
{{ end }}

44

Future Additions

WebAssembly Integration:

Implement Wasm to enable native code compilation in the browser.

Enhance static site functionality with dynamic elements and extended plugin
capabilities.

Compatibility with Hugo SSG Themes:

Provide Compatibility with Hugo themes, another widely used SSG implemented in
GoLang.

Access a wide range of themes from Hugo's extensive community ecosystem. 45

Usecases

We use anna personal websites, and wikis. An in the works, our redesigned college club
website HSP (https://wonderful-pegasus-a6899b.netlify.app/)

hegde.live (https://hegde.live)

sudhir.live (https://sudhir.live)

polarhive.net/wiki (https://polarhive.net/wiki) 46

https://wonderful-pegasus-a6899b.netlify.app/
https://hegde.live/
https://sudhir.live/
https://polarhive.net/wiki

Thank you

Adhesh Athrey, Aditya Hegde, Anirudh Sudhir, Nathan Paul

6th July 2024

gh/anna-ssg

